Rational surfaces with too many vector fields
نویسندگان
چکیده
منابع مشابه
Varieties with Too Many Rational Points
We investigate Fano varieties defined over a number field, which contain subvarieties whose number of rational points of bounded height is comparable to the total number on the variety.
متن کاملconstruction of vector fields with positive lyapunov exponents
in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...
15 صفحه اولOn Curves over Finite Fields with Many Rational Points
We study arithmetical and geometrical properties of maximal curves, that is, curves defined over the finite field Fq2 whose number of Fq2 -rational points reachs the Hasse-Weil upper bound. Under a hypothesis on non-gaps at rational points we prove that maximal curves are Fq2 -isomorphic to y q + y = x for some m ∈ Z.
متن کاملOn a remarkable class of rational surfaces in 4-space generalizing surfaces with linear normal vector fields
In the present paper we investigate a special class of two-dimensional rational surfaces Φ in R whose tangent planes satisfy the following property: For any threespace E in R there exists a unique tangent plane T (u, v) of Φ which is parallel to E. For all possible varieties of tangent planes T (u, v) the corresponding families of surfaces in R are constructed explicitly. Quadratic triangular B...
متن کاملRay Class Fields of Global Function Fields with Many Rational Places
A general type of ray class fields of global function fields is investigated. Their systematic computation leads to new examples of curves over finite fields with many rational points compared to their genera.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1979
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1979-0537071-7